Exploring AI with Python in Replit: A Tutorial for High School Students

AI programming with Python in Replit

SHARE WITH FRIENDS >

Introduction to AI with Python

Welcome to an exciting journey into the world of Artificial Intelligence (AI) using Python in Replit! This tutorial is designed for high school students who have a reasonable understanding of computer science concepts. You’ll learn how to harness the power of Python and AI libraries to create a simple AI project: A Sentiment Analysis Tool.

What is Sentiment Analysis?

Sentiment Analysis, often used in natural language processing, is a technique used by computers to understand and interpret the emotional tone behind words. It’s widely used in analyzing customer reviews, social media, and more.

Setting Up in Replit

First, make sure you have an account on Replit. Once logged in:

  1. Create a New Repl: Choose Python as your language.
  2. Name Your Project: Something descriptive, like “SentimentAnalysis”.

Installing Necessary Libraries

For this project, we’ll use the textblob library, a simple Python library for processing textual data. It provides a straightforward API for diving into common natural language processing (NLP) tasks.

In the Replit interface, head to the Packages tab and search for textblob. Click the plus (+) icon to install it. Alternatively, you can install it by typing the following in the Console tab:

pip install textblob

Setting Up TextBlob

Before using TextBlob, we need to download some necessary datasets. Add the following lines at the beginning of your main Python file to perform this setup:

import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('brown')

Writing the Sentiment Analysis Tool

Now, let’s dive into coding our tool. Our program will take a sentence input from the user and output whether the sentiment is positive, negative, or neutral. Below is the complete code for our project:

# Sentiment Analysis with TextBlob in Python

# Importing TextBlob
from textblob import TextBlob
import nltk

# Download necessary data for TextBlob
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('brown')

def analyze_sentiment(sentence):
    # Creating a TextBlob object
    analysis = TextBlob(sentence)

    # Analyzing sentiment
    polarity = analysis.sentiment.polarity

    if polarity > 0:
        return "Positive 😊"
    elif polarity == 0:
        return "Neutral 😐"
    else:
        return "Negative 😟"

# Main function
def main():
    print("Welcome to the Sentiment Analysis Tool!")

    # User input
    sentence = input("Enter a sentence to analyze its sentiment: ")

    # Analyzing sentiment
    sentiment = analyze_sentiment(sentence)

    print(f"The sentiment of the entered sentence is: {sentiment}")

# Run the main function
if __name__ == "__main__":
    main()

Running the Tool

After you paste this code into your Repl’s editor, hit the Run button. Enter any sentence when prompted, and watch as the program analyzes its sentiment!

Expanding Your Project

Now that you’ve built a basic Sentiment Analysis tool, consider the following ideas to expand your project:

  • Analyze sentiment of a text file containing multiple sentences or paragraphs.
  • Fetch live tweets using the Twitter API and analyze their sentiments.
  • Incorporate a GUI using libraries like Tkinter for a more user-friendly interface.

Source Code

Below is the complete source code for the Sentiment Analysis tool project. This code is designed for execution in Replit and leverages the TextBlob library for processing and analyzing textual data. Follow the tutorial steps to set up your Replit environment and run this Python program.

# Sentiment Analysis with TextBlob in Python

# Importing TextBlob
from textblob import TextBlob
import nltk

# Download necessary data for TextBlob
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('brown')

def analyze_sentiment(sentence):
    # Creating a TextBlob object
    analysis = TextBlob(sentence)

    # Analyzing sentiment
    polarity = analysis.sentiment.polarity

    if polarity > 0:
        return "Positive 😊"
    elif polarity == 0:
        return "Neutral 😐"
    else:
        return "Negative 😟"

# Main function
def main():
    print("Welcome to the Sentiment Analysis Tool!")

    # User input
    sentence = input("Enter a sentence to analyze its sentiment: ")

    # Analyzing sentiment
    sentiment = analyze_sentiment(sentence)

    print(f"The sentiment of the entered sentence is: {sentiment}")

# Run the main function
if __name__ == "__main__":
    main()

How to Run This Code:

  1. Set up your Replit environment by creating a new Python repl and naming it accordingly.
  2. Install the textblob package using Replit’s package manager or by running pip install textblob in the Console tab.
  3. Paste the code provided above into the main Python file in your Repl.
  4. Execute the program by clicking the “Run” button. When prompted, input any sentence to see its sentiment analysis.
  5. Experiment and expand the project following the suggestions provided in the tutorial for more advanced features and functionality.

This project serves as a great starting point for high school students interested in exploring AI and natural language processing with Python. Enjoy building and learning!

Conclusion

Congratulations on creating your Sentiment Analysis tool with Python in Replit! This project introduces you to the fascinating world of AI and NLP. Remember, AI and Python offer limitless possibilities; this project is just the beginning. Keep exploring, learning, and building!

SHARE WITH FRIENDS >

IDE options

Education

16 Apr 2024

Ready to Boost Your Teen’s Future with Coding?

Best dev enviroments for learning to code

Education

16 Apr 2024

Top 5 Epic Coding Environments for Teens

review kids coding sites

Education, Learn to Code

16 Apr 2024

Top Learn-to-Code Online Sites and Tools for Kids

Convert USD to other currency program

Advanced Placement, Java, Tutorial

4 Apr 2024

Object-Oriented Programming in Java – AP CS A

learn to use replit IDE

Advanced Placement, Java, Tutorial

4 Apr 2024

Exploring Concurrency in Java – AP Exam

Minecraft Mods in Java

Minecraft

4 Apr 2024

Getting Started with Minecraft Forge

Lesson on functions in computer science programming

Tutorial

4 Apr 2024

Preparing to Teach Coding for the First Time

learn to code as a family

Education

4 Apr 2024

In-Person vs. Live Virtual Coding Lessons